Bounding real tensor optimizations via the numerical range

نویسندگان

چکیده

A new method of using the numerical range a matrix to bound optimal value certain optimization problems over real tensor product vectors is presented. This stronger than trivial bounds based on eigenvalues and can be computed significantly faster provided by semidefinite programming relaxations. Numerous applications other hard linear algebra are discussed, such as showing that subspace matrices contains no rank-one matrix, map acting positive.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

The Q-numerical Range and the Real Q-numerical Range of the Shifts

We show that the q-numerical range and the real q-numerical range of the unilateral shift and bilateral shift and their adjoints are the closed unit disc when jqj < 1. We also consider some weighted shifts.

متن کامل

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Linear Algebra

سال: 2023

ISSN: ['1081-3810', '1537-9582']

DOI: https://doi.org/10.13001/ela.2023.7635